Banner

Boiling Points of Common Substances

The boiling point of a substance is a fundamental physical property that indicates the temperature at which the vapor pressure of a liquid equals the surrounding atmospheric pressure. At this temperature, the liquid transitions into a gas. Understanding the boiling points of various substances is crucial in fields such as chemistry, engineering, environmental science, and industrial applications.

Alfa Chemistry provides the boiling points of the most common substances below. This technical information serves as a fundamental reference for researchers, engineers, and professionals in related fields.

Pure Elements

All A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ElementBoiling Point
Actinium3198 °C5788 °F
Aluminum2441 °C4426 °F
Americium2607 °C4725 °F
Antimony1440 °C2625 °F
Argon−185.848 °C−302.526 °F
Arsenic614 °C (subl.)1137 °F
Astatine337 °C638.6 °F
Barium1637 °C2978 °F
Berkelium2627 °C4761 °F
Beryllium2475 °C4487 °F
Bismuth1564 °C2847 °F
Boron3927 °C7101 °F
Bromine58.8 °C142 °F
Cadmium767 °C1413 °F
Calcium1484 °C2703 °F
Cerium3443 °C6229 °F
Cesium670.8 °C1240 °F
Chlorine−34.04 °C−29.27 °F
Chromium2670 °C4838 °F
Cobalt2925 °C5297 °F
Copper2575 °C4667 °F
Curium3110 °C5630 °F
Dysprosium2567 °C4653 °F
Einsteinium860 °C1580 °F
Erbium2868 °C5194 °F
Europium1529 °C2784 °F
Fermium1527 °C1800.15 °F
Fluorine−188.11 °C−306.60 °F
Francium677 °C1250.6 °F
Gadolinium3000 °C5432 °F
Gallium2400 °C4352 °F
Germanium2833 °C5131 °F
Gold2800 °C5072 °F
Hafnium4603 °C8317 °F
Helium-269 °C-452 °F
Holmium2600 °C4712 °F
Hydrogen-253 °C-423 °F
Indium2072 °C3762 °F
Iodine184.3 °C363.8 °F
Iridium4130 °C7466 °F
Iron2870 °C5198 °F
Krypton−153.415 °C−244.147 °F
Lanthanum3464 °C6267 °F
Lead1750 °C3182 °F
Lithium1330 °C2426 °F
Lutetium3402 °C6156 °F
Magnesium1090 °C1994 °F
Manganese2060 °C3740 °F
Mercury357 °C675 °F
Molybdenum4651 °C8403 °F
Neodymium3074 °C5565 °F
Neon−246.046 °C−410.883 °F
Neptunium4000 °C7232 °F
Nickel2800 °C5072 °F
Niobium4740 °C8564 °F
Nitrogen-196 °C-320 °F
Osmium5012 °C9054 °F
Oxygen-183 °C-297 °F
Palladium2963 °C5365 °F
Phosphorus (red)431 °C (subl.)808(subl.) °F
Phosphorus (white)277 °C531 °F
Platinum3825 °C4098 °F
Plutonium3230 °C5846 °F
Polonium962 °C1764 °F
Potassium760 °C1400 °F
Praseodymium3130 °C5666 °F
Promethium3000 °C5432 °F
Protactinium4027 °C7280.6 °F
Radium1737 °C3159 °F
Radon−61.7 °C−79.1 °F
Rhenium5596 °C10105 °F
Rhodium3700 °C6692 °F
Rubidium688 °C1270 °F
Ruthenium4150 °C7502 °F
Samarium1900 °C3452 °F
Scandium2836 °C5136 °F
Selenium700 °C1292 °F
Silicon3280 °C5936 °F
Silver2212 °C4013 °F
Sodium884 °C1623 °F
Strontium1382 °C2511 °F
Sulfur444.6 °C823 °F
Tantalum5365 °C9689 °F
Technetium4265 °C7709 °F
Tellurium988 °C1810 °F
Terbium3123 °C5653 °F
Thallium1473 °C2683 °F
Thorium4800 °C8672 °F
Thulium1950 °C3542 °F
Tin2600 °C4712 °F
Titanium3290 °C5954 °F
Tungsten5550 °C10022 °F
Uranium4140 °C7484 °F
Vanadium3407 °C6165 °F
Xenon−108.099 °C−162.578 °F
Ytterbium1430 °C2606 °F
Yttrium2930 °C5306 °F
Zinc910 °C1670 °F
Zirconium4377 °C7911 °F
  • T(°F) = [T(℃)](9/5)+32
  • T(℃) = 5/9[T(°F)-32]

Common Chemicals and Substances

All A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Chemicals and SubstancesBoiling Point (℃)
Acetaldehyde20.8
Acetic Acid Anhydride139
Acetone50.5
Acetylene-84
Alcohol-allyl97.2
Alcohol-butyl-n117
Alcohol-ethyl (grain, ethanol)79
Alcohol-methyl (wood, methanol)64.7
Alcohol-propyl97.5
Alcohol-Isobutyl107.8 ℃
Ammonia-35.5
Aniline184.4
Acentonitrile81.6 ℃
Acrolein52.3 ℃
Acrylonitrile77.2 ℃
Allylamine54 ℃
Anisole153.6 ℃
Benzene (Benzol)80.4
n-Butane-0.5
n-Butyric acid162.5
Benzaldehyde178.7
Benzonitrile191.1
Bromine58.8
Bromobenzene156
1,2-Butadiene10.9
1-Butene-6.25
Butanal74.8
1-Butanol117.6
2-Butanon79.6
Carbolic Acid (phenol)182.2
Carbon Dioxide-78.5
Carbon Disulfide46.2
Carbon Tetrachloride76.7
Chloroform62.2
Camphor204
Carbon Bisulfide47.8
Carbon Monoxide-192
Chlorobenzene131.7
Cyclohexane80.7
Cyclohexanone155.4
Cyclopentane49.3
n-Decane173
Diethyl Ether34.7
Dimethyl sulfate186
Dimethyl sulfide37.3
Diisopropyl ether68.4
2,2-Dimethylpentane79.2
1,4-Dioxane101.2
2,3-Dimethylbutane58
Diisobutyl109
Ethane-88
Ether35
Ethyl Acetate77.2
Ethyl Bromide38.4
Ethylene Bromide131.7
Ethylene Glycol197
Ethanol78.24
Ethylamine16.6
Ethylbenzene136
Ethylene-103.7
3-Ethylpentane93.5
Furfurol161.7
Formaldehyde-19.1
Formic acid101
Trichlorofluoromethane refrigerant R-1123.8
Dichlorodifluoromethane refrigerant R-12-29.8
Chlorodifluoromethane refrigerant R-22-41.2
Fyrfuryl alcohol168
Glycerin290
Gasoline38 - 204
Glycol197
n-Heptane98.4
n-Hexane68.7
Hexylamine132
Hydrochloric Acid-81.7
Hydrofluoric Acid18.9
Hydrogen Chloride-81.7
Hydrogen Sulfide-60
Isopropyl Alchol80.3
Isopropylbenzene hydroperoxide153
Isobutane-11.72
Isobutene-6.9
Isooctane99.2
Isopentane27.8
Isoprene34.1
Isopropylbenzene152
Kerosene (paraffin)150 - 300
Linseed Oil287
Methyl Acetate57.2
Methyl Iodide42.6
Milk100.167
Mercury356.9
Methane-161.5
Methanol (methyl alcohol, wood alcohol)64.5
Methyl Bromide3.3
Metyl Chloride-23.9
Methylene Chloride(CH2Cl2, dichloromethane)39.8
Methylamine-6.4
Methyl Ether (C2H6O)-25
Methylcyclohexane101
Methylcyclopentane71.8
2-Methylhexane90.1
3-Methylhexane91.8
2-Methylpentane60.3
3-Methylpentane63.3
Nitrobenzene210.9
n-Nonane150.7
Naphtha100 - 160
Naphthalene (Napthaline)217.9
Neohexane49.7
Neopentane9.5
Nitric Acid120
n-Octane125.6
Olive Oil300
Petrol95
Petroleum210
Phenol182
Propane-43
Propionic Acid141
Propylene Glycol187
Paraldehyde124
n-Pentane36
1-Pentene30
Peroxyacetic acid110
Petroleum ether35 - 60
Phosgene8.3
Phosphoric Acid213
Propanal48
Propene-47.72
2-Propanol82.2
Propylamine47.2
Saturated brine108
Styrene145
Sulphur444.6
Sulfuric Acid330
Sulfur Dichloride59.6
Sulfur Dioxide-10
Sulfuryl Chloride69.4
Triptane80.9
Triethanolamine350
Tar300
Toluene110.6
Turpentine160
Water (sea)100.7
Water (fresh)100
o-Xylene144.4
m-Xylene139.1
p-Xylene138.3

Factors Affecting Boiling Points

Atmospheric Pressure

Boiling points vary with changes in atmospheric pressure. At higher altitudes, where atmospheric pressure is lower, boiling points decrease. Conversely, in pressurized environments, boiling points increase.

Intermolecular Forces

Stronger intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, and London dispersion forces, result in higher boiling points. For example, water has a higher boiling point than methane due to hydrogen bonding.

Molecular Weight

Generally, substances with higher molecular weights have higher boiling points. This is evident when comparing the boiling points of methane (CH4) and octane (C8H18).

Chemical Structure

The shape and structure of a molecule can influence its boiling point. Branched molecules typically have lower boiling points than their straight-chain isomers due to decreased surface area and weaker London dispersion forces.

Practical Applications

Understanding boiling points is critical in designing distillation processes, selecting appropriate solvents for reactions, and developing efficient cooling systems. In pharmaceuticals, precise control of boiling points ensures the integrity of active ingredients during formulation and storage.

Online Inquiry

Please contact us if you have questions about our company, our products, or general enquiries. Please use the form below.

Verification code

Orders originating from personal email accounts will not be fulfilled unless the individual is verified to represent a legitimate academic, industrial, or governmental organization.

Alfa Chemistry

For product inquiries, please use our online system or send an email to .

Alfa Chemistry
Shopping basket
qrcodex
Download
Verification code
* I hereby give my consent that I may receive marketing e-mails with information on existing and new services from this company. I know that I can opt-out from receiving such e-mails at any time or by using the link which will be provided in each marketing e-mail.