The boiling point of a substance is a fundamental physical property that indicates the temperature at which the vapor pressure of a liquid equals the surrounding atmospheric pressure. At this temperature, the liquid transitions into a gas. Understanding the boiling points of various substances is crucial in fields such as chemistry, engineering, environmental science, and industrial applications.
Alfa Chemistry provides the boiling points of the most common substances below. This technical information serves as a fundamental reference for researchers, engineers, and professionals in related fields.
Pure Elements
Element | Boiling Point | |
Actinium | 3198 °C | 5788 °F |
Aluminum | 2441 °C | 4426 °F |
Americium | 2607 °C | 4725 °F |
Antimony | 1440 °C | 2625 °F |
Argon | −185.848 °C | −302.526 °F |
Arsenic | 614 °C (subl.) | 1137 °F |
Astatine | 337 °C | 638.6 °F |
Barium | 1637 °C | 2978 °F |
Berkelium | 2627 °C | 4761 °F |
Beryllium | 2475 °C | 4487 °F |
Bismuth | 1564 °C | 2847 °F |
Boron | 3927 °C | 7101 °F |
Bromine | 58.8 °C | 142 °F |
Cadmium | 767 °C | 1413 °F |
Calcium | 1484 °C | 2703 °F |
Cerium | 3443 °C | 6229 °F |
Cesium | 670.8 °C | 1240 °F |
Chlorine | −34.04 °C | −29.27 °F |
Chromium | 2670 °C | 4838 °F |
Cobalt | 2925 °C | 5297 °F |
Copper | 2575 °C | 4667 °F |
Curium | 3110 °C | 5630 °F |
Dysprosium | 2567 °C | 4653 °F |
Einsteinium | 860 °C | 1580 °F |
Erbium | 2868 °C | 5194 °F |
Europium | 1529 °C | 2784 °F |
Fermium | 1527 °C | 1800.15 °F |
Fluorine | −188.11 °C | −306.60 °F |
Francium | 677 °C | 1250.6 °F |
Gadolinium | 3000 °C | 5432 °F |
Gallium | 2400 °C | 4352 °F |
Germanium | 2833 °C | 5131 °F |
Gold | 2800 °C | 5072 °F |
Hafnium | 4603 °C | 8317 °F |
Helium | -269 °C | -452 °F |
Holmium | 2600 °C | 4712 °F |
Hydrogen | -253 °C | -423 °F |
Indium | 2072 °C | 3762 °F |
Iodine | 184.3 °C | 363.8 °F |
Iridium | 4130 °C | 7466 °F |
Iron | 2870 °C | 5198 °F |
Krypton | −153.415 °C | −244.147 °F |
Lanthanum | 3464 °C | 6267 °F |
Lead | 1750 °C | 3182 °F |
Lithium | 1330 °C | 2426 °F |
Lutetium | 3402 °C | 6156 °F |
Magnesium | 1090 °C | 1994 °F |
Manganese | 2060 °C | 3740 °F |
Mercury | 357 °C | 675 °F |
Molybdenum | 4651 °C | 8403 °F |
Neodymium | 3074 °C | 5565 °F |
Neon | −246.046 °C | −410.883 °F |
Neptunium | 4000 °C | 7232 °F |
Nickel | 2800 °C | 5072 °F |
Niobium | 4740 °C | 8564 °F |
Nitrogen | -196 °C | -320 °F |
Osmium | 5012 °C | 9054 °F |
Oxygen | -183 °C | -297 °F |
Palladium | 2963 °C | 5365 °F |
Phosphorus (red) | 431 °C (subl.) | 808(subl.) °F |
Phosphorus (white) | 277 °C | 531 °F |
Platinum | 3825 °C | 4098 °F |
Plutonium | 3230 °C | 5846 °F |
Polonium | 962 °C | 1764 °F |
Potassium | 760 °C | 1400 °F |
Praseodymium | 3130 °C | 5666 °F |
Promethium | 3000 °C | 5432 °F |
Protactinium | 4027 °C | 7280.6 °F |
Radium | 1737 °C | 3159 °F |
Radon | −61.7 °C | −79.1 °F |
Rhenium | 5596 °C | 10105 °F |
Rhodium | 3700 °C | 6692 °F |
Rubidium | 688 °C | 1270 °F |
Ruthenium | 4150 °C | 7502 °F |
Samarium | 1900 °C | 3452 °F |
Scandium | 2836 °C | 5136 °F |
Selenium | 700 °C | 1292 °F |
Silicon | 3280 °C | 5936 °F |
Silver | 2212 °C | 4013 °F |
Sodium | 884 °C | 1623 °F |
Strontium | 1382 °C | 2511 °F |
Sulfur | 444.6 °C | 823 °F |
Tantalum | 5365 °C | 9689 °F |
Technetium | 4265 °C | 7709 °F |
Tellurium | 988 °C | 1810 °F |
Terbium | 3123 °C | 5653 °F |
Thallium | 1473 °C | 2683 °F |
Thorium | 4800 °C | 8672 °F |
Thulium | 1950 °C | 3542 °F |
Tin | 2600 °C | 4712 °F |
Titanium | 3290 °C | 5954 °F |
Tungsten | 5550 °C | 10022 °F |
Uranium | 4140 °C | 7484 °F |
Vanadium | 3407 °C | 6165 °F |
Xenon | −108.099 °C | −162.578 °F |
Ytterbium | 1430 °C | 2606 °F |
Yttrium | 2930 °C | 5306 °F |
Zinc | 910 °C | 1670 °F |
Zirconium | 4377 °C | 7911 °F |
- T(°F) = [T(℃)](9/5)+32
- T(℃) = 5/9[T(°F)-32]
Common Chemicals and Substances
Factors Affecting Boiling Points
Atmospheric Pressure
Boiling points vary with changes in atmospheric pressure. At higher altitudes, where atmospheric pressure is lower, boiling points decrease. Conversely, in pressurized environments, boiling points increase.
Intermolecular Forces
Stronger intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, and London dispersion forces, result in higher boiling points. For example, water has a higher boiling point than methane due to hydrogen bonding.
Molecular Weight
Generally, substances with higher molecular weights have higher boiling points. This is evident when comparing the boiling points of methane (CH4) and octane (C8H18).
Chemical Structure
The shape and structure of a molecule can influence its boiling point. Branched molecules typically have lower boiling points than their straight-chain isomers due to decreased surface area and weaker London dispersion forces.
Practical Applications
Understanding boiling points is critical in designing distillation processes, selecting appropriate solvents for reactions, and developing efficient cooling systems. In pharmaceuticals, precise control of boiling points ensures the integrity of active ingredients during formulation and storage.